A unified model for energy and environmental performance assessment of natural gas-fueled poly-generation systems
详细信息查看全文 | 推荐本文 |
摘要
Poly-generation systems for combined production of manifold energy vectors such as electricity, heat at different enthalpy levels (for instance, in the form of hot water and steam), and cooling power from a unique source of primary energy (typically natural gas) are increasingly spreading, above all on a small-scale basis (below 1 MWe), owing to their enhanced energy, environmental and economic characteristics. Availability of suitable tools for assessing the performance of such systems is therefore fundamental. In this paper, a unified general model is proposed for assessing the energy and CO2 emission performance of any type of poly-generation system with natural gas as the energy input. In particular, the classical energy saving model for cogeneration systems is extended to include in the analysis further energy vectors by defining the novel PPES (Poly-generation Primary Energy Saving) indicator. In addition, equivalent efficiencies for CO2 emission assessment are defined and used in the formulation of the new PCO2ER (Poly-generation CO2 Emission Reduction) indicator, specifically introduced for environmental analysis. The formal analogy between the PPES and the PCO2ER indicators is highlighted. Numerical applications are provided to show the effectiveness of the proposed models and to quantify the typical benefits that poly-generation systems can bring. In particular, the new indicators are of relevant interest for both energy planners and policy makers, above all in the outlook of formulating financial incentive strategies, as it already occurs for cogeneration systems, or of participating to specific energy-related markets such as the ones for trading white certificates or emission allowances.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700