Growth, structure and physical properties of single crystals of pure and Pb-doped Bi-based high Tc superconductors
详细信息查看全文 | 推荐本文 |
摘要
Single crystals of (Bi1−xPbx)2Sr2Ca2Cu3O10+δ (x = 0 and 0.16) (sizes up to 3 × 2 × 0.1 mm3) have been grown by means of a newly developed “vapour-assisted travelling solvent floating zone” technique (VA-TSFZ). Post-annealing under high pressure of O2 (up to 10 MPa at T = 500 °C) was applied to enhance Tc (up to 111 K) and improve the homogeneity of the crystals (ΔTc less-than-or-equals, slant 1 K). The structure of both Pb-free and Pb-doped Bi-2223 was refined for the first time from single crystal X-ray diffraction (XRD) data. The unit cell of the average structure is pseudo-tetragonal with a = 5.4210(7), b = 5.4133(6) and c = 37.010(7) Å, and a = 5.395(1), b = 5.413(1) and c = 37.042(11) Å, for the Pb-free and the Pb-doped phase, respectively. An incommensurate modulation in the direction of one of the short cell vectors has been defined (q not, vert, similar 0.21 a*), however, the structure can be conveniently described in a supercell with a fivefold volume (a = 27.105(4) Å). With respect to the “non-modulated” structure, one additional oxygen atom for ten initial O was found to be inserted into the BiO layers. The superconducting anisotropy of Bi-2223 was found to be not, vert, similar50, from measurements of the lower critical field. The anisotropy of Bi-2223 is significantly reduced compared to that of Bi-2212, and this accounts for the enhanced irreversibility fields in Bi-2223. Furthermore, Bi-2223 has a higher critical current density, and a reduced magnetic relaxation rate compared to Bi-2212, which are both signatures of more effective pinning in Bi-2223 due to its reduced anisotropy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700