Comparison of control algorithms for the blood glucose concentration in a virtual patient with an artificial pancreas
详细信息查看全文 | 推荐本文 |
摘要
To obtain the most suitable control algorithm for a wearable artificial pancreas, different control algorithms were compared and tested using a Hovorka model. Model predictive control (MPC), linear and nonlinear model forms, proportional integral derivative control (PID), neural-network-based model predictive control (NN-MPC), nonlinear autoregressive moving average (NARMA-L2) and sequential quadratic programming (SQP) were evaluated using the Hovorka model. Due to the fact that modeling of biomedical processes are very complex, to present the most effective control algorithm, various control strategies were needed to application. In the control algorithms, set point tracking and disturbance rejection were performed. With respect to the rise times of the control algorithms, SQP with optimal control had the shortest time, and NARMA-L2 had the longest time. Because the control algorithm connects the glucose meter and the insulin pump in an artificial pancreas, the rise time is the most important parameter. We propose that optimal control with SQP is the most suitable control algorithm to connect the glucose meter and the insulin pump.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700