Crack initiation and path selection in brittle specimens: A novel experimental method and computations
详细信息查看全文 | 推荐本文 |
摘要
We present a novel experimental method aiming at investigating aspects of dynamic crack propagation in brittle materials under in-plane, quasi-static, mixed mode loading. The method consists in gluing a precracked specimen into a rectangular hole in an aluminum frame using thin layers of epoxy resin. The driving force for crack initiation and propagation lies in the mismatch between the coefficients of thermal expansion (CTE) of the aluminum frame and the specimen, following modest heating of the assembly on an electrical heating stage. The main advantages of this method are in its avoidance of gripping problems and of the need to employ a complicated loading device. An important benefit of this method is the ability to analyze, numerically, the assembly containing the specimen as a boundary value problem by means of finite element analysis without any prior assumptions regarding the boundary conditions.

The method enables investigation of various aspects of dynamic crack propagation in brittle materials, including crack initiation, crack path selection criteria, and surface instabilities under a relatively low energy-speed regime. To validate the method鈥檚 applicability, we first evaluated the fracture toughness, KIC, of soda lime glass specimens. We then performed fracture experiments of slow and fast crack propagation in these specimens under combined tensile and shear stresses, which revealed the paths selected by the cracks. These paths were calculated using quasi-static finite element analysis (FEA), code Franc2D, and the dynamic eXtended FEA Method, using the criteria for crack path selection. It was found that the crack paths obeyed the law of local symmetry (KII = 0) for both the quasi-static and dynamic crack propagation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700