Some physicochemical properties of two major soluble hepatic glutathione transferases of tilapia (Tilapia zilli)
详细信息查看全文 | 推荐本文 |
摘要
Two distinct glutathione transferases from the liver of adult Tilapia zilli were identified and purified to apparent homogeneity by ion-exchange chromatography on DEAE-cellulose and by gel filtration on Sephadex G-150. These major GST forms labeled tzGST1 and tzGST2 accounted for approximately 42%of the activity detectable with 1-chloro-2,4-dinitrobenzene (CDNB) as a typical electrophilic substrate. Apparent subunit and molecular mass values, substrate specificities and sensitivity to inhibitors as well as kinetic studies were used to differentiate the GST forms. SDS/PAGE indicated subunit molecular masses of 22.0 kDa (tzGST1) and 26.1 kDa (tzGST2) while native molecular weight by gel-filtration on sephadex G-100 indicated native molecular masses of 46.8 kDa and 48.0 kDa for tzGST1 and tzGST2 respectively. They appeared to be homodimers. Inhibition studies showed that tzGST1 was more sensitive to ethacrynic acid (EA), hematin, tributyltinacetate (TBTA), triethyltinbromide (TETB), and triphenyltinchloride (TPTC) than tzGST2 with TPTC being the most potent inhibitor. T. zilli GSTs could conjugate CDNB, DCNB, 蟻-NBC, and EA with GSH but displayed no observable conjugating activity with NBDCl. The Km and Vmax for tzGST1 and tzGST2 with CDNB were 0.56 卤 0.05 mM; 0.24 卤 0.03 渭mol/min/ml and 0.91 卤 0.07 mM; 0.14 卤 0.05 渭mol/min/ml respectively while Km and Vmax with GSH were 0.46 卤 0.02 mM; 0.19 卤 0.20 渭mol/min/ml and 1.32 卤 0.15 mM; 0.21 卤 0.07 渭mol/min/ml respectively. Denaturation and renaturation studies with guanidine hydrochloride (Gdn-HCl) revealed that concentration of 4.0 M Gdn-HCl completely denatured tzGST1 and the possible isoenzyme was able to renature to 92%of the original activity. The renaturation process was dependent on temperature. The outcome of this study indicated that tzGSTs are possible GST isoenzymes actively present and involve in the detoxification process in the liver of tilapia when the subject is exposed to chemical toxins. The wide range of chemical toxins encountered in the polluted environment may have directed the selection of multiple tilapia GST isoforms with broad substrate specificity via gene duplication. Consequently, tzGST1 has a better chemical toxin bio-transforming capacity than tzGST2 due to its higher affinity for its substrates - a form of adaption to the polluted environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700