Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots
详细信息查看全文 | 推荐本文 |
摘要
In the present study, rice seedlings were exposed to a range of Cd concentrations (0.1 μM, 1 μM, 10 μM, 100 μM and 1 mM) for 15 days and a combination of different molecular approaches were used to evidence Cd effects and to assess the plants’ ability to counteract metal toxicity. At a macroscopical level, only the highest Cd concentration (1 mM) caused a complete plant growth inhibition, whereas the lowest concentrations seemed to stimulate growth. At genome level, the amplified fragment length polymorphism (AFLP) technique was applied to detect DNA sequence changes in root cells, showing that all the Cd concentrations induced significant DNA polymorphisms in a dose-dependent manner. Data also evidenced the absence of preferential mutation sites.

Plant responses were analysed by measuring the levels of gluthatione (GSH) and phytochelatins (PCs), the thiol-peptides involved in heavy metal tolerance mechanisms. Results showed a progressive increase of GSH up to 10 μM of Cd treatment, whereas a significant induction only of PC3 was detected in roots of plants exposed to 100 μM of Cd. As suggested by the proteome analysis of root tissues, this last concentration strongly induced the expression of regulatory proteins and some metabolic enzymes. Furthermore, the treatment with 10 μM of Cd induced changes in metabolic enzymes, but it mainly activated defence mechanisms by the induction of transporters and proteins involved in the degradation of oxidatively modified proteins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700