Lanczos and recursion techniques for multiscale kinetic Monte Carlo simulations
详细信息查看全文 | 推荐本文 |
摘要
We review an approach to the simulation of the class of microstructural and morphological evolution involving both relatively short-ranged chemical and interfacial interactions and long-ranged elastic interactions. The calculation of the anharmonic elastic energy is facilitated with Lanczos recursion. The elastic energy changes affect the rate of vacancy hopping, and hence the rate of microstructural evolution due to vacancy-mediated diffusion. The elastically informed hopping rates are used to construct the event catalog for kinetic Monte Carlo simulation. The simulation is accelerated using a second-order residence time algorithm. The effect of elasticity on the microstructural development has been assessed. This article is related to a talk given in honor of David Pettifor at the DGP60 Workshop in Oxford.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700