Two scenarios on the driving mechanism of the Jovian equatorial jet with secondary hydrodynamic instabilities
详细信息查看全文 | 推荐本文 |
摘要
We test the feasibility of two scenarios that may drive the broad, prograde, equatorial jets in the Jovian atmosphere within the shallow “weather layer”. The first idea attempts to explain the flat-headed jet as a consequence of a hydrodynamic instability along an equatorially trapped primarily jet. The strong primary jet is induced by a 300 m sp>−1p> Kelvin wave. The second idea is a bridging of a pair of off-equatorial jets due to horizontal eddy diffusion (the so-called Gierasch mechanism). The primary jets can be induced by a Hadley circulation, and might then be interconnected by subsequent hydrodynamic instabilities between them. We test the two scenarios using a general circulation model, but have so far been unable to obtain an equatorial jet that resembles observations. It appears, therefore, that the previously proposed model of combining Kelvin and Hadley forcing, is more plausible under the shallow hypothesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700