Ankle and midfoot kinetics during normal gait: A multi-segment approach
详细信息查看全文 | 推荐本文 |
摘要
Multi-segment foot models are increasingly being used to evaluate intra and inter-segment foot kinematics such as the motion between the hindfoot/tibia (ankle) and the forefoot/hindfoot (midfoot) during walking. However, kinetic analysis have been mainly restricted to one-segment foot models and could be improved by considering a multi-segment approach. Therefore, the aims of this study were to (1) implement a kinetic analysis of the ankle and theoretical midfoot joints using the existing Oxford Foot Model (OFM) through a standard inverse dynamics approach using only marker, force plate and anthropometric data and (2) to compare OFM ankle joint kinetics to those output by the one-segment foot plugin-gait model (PIG). 10 healthy adolescents fitted with both the OFM and PIG markers performed barefoot comfortable speed walking trials over an instrumented walkway. The maximum ankle power generation was significantly reduced by approximately 40%through OFM calculations compared to PIG estimates (p<0.001). This result was not caused by a decrease in OFM computed joint moments, but by a reduction in the angular velocity between the tibia/hindfoot (OFM) compared to the tibia/foot (PIG) (p<0.001). Additionally, analysis revealed considerable midfoot loading. One-segment foot models overestimate ankle power, and may also overestimate the contribution of the triceps surae. A multi-segment approach may help quantify the important contribution of the midfoot ligaments and musculature to power generation. We therefore recommend the use of multi-segment foot models to estimate ankle and midfoot kinetics, especially when surgical decision-making is based on the results of three-dimensional gait analysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700