Role of inclusion stiffness and interfacial strength on dynamic matrix crack growth: An experimental study
详细信息查看全文 | 推荐本文 |
摘要
Experimental simulations of dynamic crack growth past inclusions of two different elastic moduli, stiff (glass) and compliant (polyurethane) relative to the matrix (epoxy), are carried out in a 2D setting. Full-field surface deformations are mapped in the crack-inclusion vicinity optically. The crack growth behavior as a function of inclusion-matrix interfacial strength and the inclusion location relative to the crack is studied under stress-wave loading conditions. An ultra high-speed rotating mirror-type digital camera is used to record random speckle patterns in the crack-inclusion vicinity to quantify in-plane displacement fields. The crack-tip deformation histories from the time of impact until complete fracture are mapped and fracture parameters are extracted. The crack front is arrested by the symmetrically located compliant inclusion for about half the duration needed for complete fracture event. The dynamically propagating crack is attracted and trapped by the weakly bonded inclusion interface for both stiff and compliant symmetrically located inclusion cases, whereas it is deflected away by the strongly bonded stiff inclusion and attracted by strongly bonded compliant inclusion when located eccentrically. The crack is arrested by a strongly bonded compliant inclusion for a significant fraction of the total dynamic event and is longer than the one for the weakly bonded counterpart. The compliant inclusion cases show higher fracture toughness than the stiff inclusion cases. Measured crack-tip mode-mixities correlate well with the observed crack attraction and repulsion mechanisms. Macroscopic examination of fracture surfaces reveals much higher surface roughness and ruggedness after crack-inclusion interaction for compliant inclusion than the stiff one. Implications of these observations on the dynamic fracture behavior of micron size A-glass and polyamide (PA6) particle filled epoxy is demonstrated. Filled-epoxy with 3%Vf of PA6 filler is shown to produce the same dynamic fracture toughness enhancement as the one due to 10%Vf glass.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700