Highly active ZnO rod-like nanomaterials: Synthesis, characterization and photocatalytic activity for dye removal
详细信息查看全文 | 推荐本文 |
摘要
Highly active ZnO rod-like nanostructures with pointed-shape ends have been synthesized via a simple hydrothermal method using acetic acid as an organic capping agent. The X-ray diffraction (XRD) pattern of the prepared sample reveals that the ZnO rod-like nanostructures are of pure hexagonal wurtzite structure. Morphology of the nanorods has been investigated by transmission electron microscope (TEM), which showed the formation of pointed nanorods of 30-50 nm in diameter and 400-650 nm in length. Optical properties have been investigated by UV-vis diffuse reflectance and photoluminescence spectroscopy. UV-vis absorption spectrum indicated that the ZnO nanorods have higher visible light harvesting as compared to the other morphologies in the literature. Intense room temperature green-red photoluminescence peaks at 486 nm and 564 nm has been observed for the prepared ZnO. This gives a good evidence of the presence of ionized oxygen vacancies which are favorable for photocatalytic reactions. The BET surface area and the average (BJH) adsorption pore size were 269.86 m2/g and 2.86 nm, respectively. The photocatalytic activity of the prepared sample was tested on the degradability of an industrial textile dye, Reactive Yellow 15 (Yellow GR), under sunlight irradiation. A 85.7%dye removal was achieved by applications of these rod-like nanostructures as a photocatalyst.

The reusability of the synthesized ZnO nanomaterial has been investigated under the same experimental conditions for three time to evaluate the photoactivity of the photocatalyst.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700