Improved QCM-D signal-to-noise ratio using mesoporous silica and titania
详细信息查看全文 | 推荐本文 |
摘要
In many biological and environmental applications it is crucial to detect low concentrations of low molecular weight analytes. To accomplish this a variety of surface sensing techniques, such as quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR), have been developed. These techniques provide good sensitivity and selectivity, however, there is a need to improve these even further by enhancing the signal-to-noise ratio. One suggestion to improve the QCM-D signal is to use mesoporous coated QCM-D sensor crystals as sensing substrate. Mesoporous materials are promising to use, since they possess a high specific surface area and that their properties, such as pore size, pore geometry and surface chemistry, can be controlled. Here we demonstrate a method to increase the signal-to-noise ratio of the QCM-D signal illustrated by adsorbing dendrimers on mesoporous silica and titania coated QCM-D crystals. The experiments were performed on cubic mesoporous silica having varying pore sizes and hexagonal and cubic mesoporous titania having similar pore size. The results showed that the QCM-D signal-to-noise was improved when mesoporous material was used and that the pore size and pore geometry determined the selectivity of the adsorbing analyte. These findings are important in the detection of analytes at low concentrations using QCM-D.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700