Performance of synchrotron X-ray monochromators under heat load Part 1: finite element modeling
详细信息查看全文 | 推荐本文 |
摘要
In this paper we present the details of the finite element modeling (FEM) procedure used to calculate the thermal deformation generated by the X-ray power absorbed in silicon crystals. Different parameters were varied systematically such as the beam footprint on the crystal, the reflection order and the white beam slit settings. Moreover, the influence of various cooling parameters such as the cooling coefficient and the temperature of the coolant were studied. The finite element meshing was carefully optimized to generate a deformation output that could be easily read by a diffraction simulation code. Comparison with the experiments shows that the peak-to-valley slope error calculated by the FEM is an excellent approximation of the rocking curve width for a liquid nitrogen cooled silicon (333) crystal, and a quite good approximation for significantly deformed silicon (111) crystals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700