Normal linear stability of quasi-periodic tori
详细信息查看全文 | 推荐本文 |
摘要
We consider families of dynamical systems having invariant tori that carry quasi-periodic motions. Our interest is the persistence of such tori under small, nearly-integrable perturbations. This persistence problem is studied in the dissipative, the Hamiltonian and the reversible setting, as part of a more general kam theory for classes of structure preserving dynamical systems. This concerns the parametrized kam theory as initiated by Moser [J.K. Moser, On the theory of quasiperiodic motions, SIAM Rev. 8 (2) (1966)145–172; J.K. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann. 169 (1967) 136–176] and further developed in [G.B. Huitema, Unfoldings of quasi-periodic tori, PhD thesis, University of Groningen, 1988; H.W. Broer, G.B. Huitema, F. Takens, Unfoldings of quasi-periodic tori, Mem. Amer. Math. Soc. 83 (421) (1990) 1–82; H.W. Broer, G.B. Huitema, Unfoldings of quasi-periodic tori in reversible systems, J. Dynam. Differential Equations 7 (1) (1995) 191–212]. The corresponding nondegeneracy condition involves certain (trans-)versality conditions on the normal linear, leading, part at the invariant tori. We show that as a consequence, a Cantor family of Diophantine tori with positive Hausdorff measure is persistent under nearly-integrable perturbations. This result extends the above references since presently the case of multiple Floquet exponents is included. Our leading example is the normal resonance, which occurs a lot in applications, both Hamiltonian and reversible. As an illustration of this we briefly describe the Lagrange top coupled to an oscillator.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700