Experimental characterization of hydrodynamic nanopolishing of flat steel plates
详细信息查看全文 | 推荐本文 |
摘要
Nanoscale polishing finds applications in medical, industrial, telecommunication, optics, electronic and military fields. Typically, rigid tool-based methods such as diamond turning, grinding and honing are employed for nanoscale polishing. These methods have inherent limitations in creating nanopolished surfaces on hard and profiled surfaces. To address the issue, this work is focused on experimental investigation of hydrodynamic polishing (HDP) as a nanopolishing method. The soft rubber tool and the workpiece are submerged in a slurry during hydrodynamic nanopolishing. An elastohydrodynamic film is formed between the tool and the workpiece due to the tool rotation which is responsible for nanopolishing. A HDP experimental setup was fabricated and experiments were conducted on oil hardened and non-shrinking steel (OHNS, 58-62 HRC) with colloidal alumina suspensions of different particle sizes. The experiments were designed using Taguchi techniques to study the effect of four main factors (contact load, tool stiffness, spindle speed and abrasive particle size) and three important two-factor interactions at four different polishing times. Statistical analysis of the results shows that concentration of abrasive in the slurry is a significant factor in the hydrodynamic polishing. The best surface finish of 3.5 nm was obtained using 1 渭m abrasive particle size colloidal suspension at 7.5 N load, 2400 rpm spindle speed, 90 shore A tool stiffness and 3 min of polishing time. The change in surface morphology and topography due to polishing also confirm the efficacy of the HDP process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700