Amperometric glucose biosensor based on self-assembly hydrophobin with high efficiency of enzyme utilization
详细信息查看全文 | 推荐本文 |
摘要
Hydrophobins are a family of natural self-assembling proteins with high biocompability, which are apt to form strong and ordered assembly onto many kinds of surfaces. These physical-chemical and biological properties make hydrophobins suitable for surface modification and biomolecule immobilization purposes. A class II hydrophobin HFBI was used as enzyme immobilization matrix on platinum electrode to construct amperometric glucose biosensor. Permeability of HFBI self-assembling film was optimized by selecting the proper HFBI concentration for electrode modification, in order to allow H2O2 permeating while prevent interfering compounds accessing. HFBI self-assembly and glucose oxidase (GOx) immobilization was monitored by quartz crystal microbalance (QCM), and characterization of the modified electrode surface was obtained by scanning electron microscope (SEM). The resulting glucose biosensors showed rapid response time within 6 s, limits of detection of 0.09 mM glucose (signal-to-noise ratio = 3), wide linear range from 0.5 to 20 mM, high sensitivity of 4.214 × 10−3 A M−1 cm−2, also well selectivity, reproducibility and lifetime. The all-protein modified biosensor exhibited especially high efficiency of enzyme utilization, producing at most 712 μA responsive current for per unit activity of GOx. This work provided a promising new immobilization matrix with high biocompatibility and adequate electroactivity for further research in biosensing and other surface functionalizing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700