Production of CaCO3/hyperbranched polyglycidol hybrid films using spray-coating technique
详细信息查看全文 | 推荐本文 |
摘要
Biomineralizing organisms employ macromolecules and cellular processing strategies in order to produce highly complex composite materials such as nacre. Bionic approaches translating this knowledge into viable technical production schemes for a large-scale production of biomimetic hybrid materials have met with limited success so far. Investigations presented here thus focus on the production of CaCO3/polymer hybrid coatings that can be applied to huge surface areas via reactive spray-coating. Technical requirements for simplicity and cost efficiency include a straightforward one-pot synthesis of low molecular weight hyperbranched polyglycidols (polyethers of 2,3-epoxy-1-propanol) as a simple mimic of biological macromolecules. Polymers functionalized with phosphate monoester, sulfate or carboxylate groups provide a means of controlling CaCO3 particle density and morphology in the final coatings. We employ reactive spray-coating techniques to generate CaCO3/hybrid coatings among which vaterite composites can be prepared in the presence of sulfate-containing hyperbranched polyglycidol. These coatings show high stability and remained unchanged for periods longer than 9 months. By employing carboxylate-based hyperbranched polyglycidol, it is possible to deposit vaterite-calcite composites, whereas phosphate-ester-based hyperbranched polyglycidol leads to calcite composites. Nanoindentation was used to study mechanical properties, showing that coatings thus obtained are slightly harder than pure calcite.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700