Examining the role of phosphate in glycosyl transfer reactions of Cellulomonas uda cellobiose phosphorylase using d-glucal as donor substrate
详细信息查看全文 | 推荐本文 |
摘要
Cellobiose phosphorylase from Cellulomonas uda (CuCPase) is shown to utilize d-glucal as slow alternative donor substrate for stereospecific glycosyl transfer to inorganic phosphate, giving 2-deoxy-伪-d-glucose 1-phosphate as the product. When performed in D2O, enzymatic phosphorolysis of d-glucal proceeds with incorporation of deuterium in equatorial position at C-2, implying a stereochemical course of reaction where substrate becomes protonated from below its six-membered ring through stereoselective re side attack at C-2. The proposed catalytic mechanism, which is supported by results of docking studies, involves direct protonation of d-glucal by the enzyme-bound phosphate, which then performs nucleophilic attack on the reactive C-1 of donor substrate. When offered d-glucose next to d-glucal and phosphate, CuCPase produces 2-deoxy-尾-d-glucosyl-(1鈫?)-d-glucose and 2-deoxy-伪-d-glucose 1-phosphate in a ratio governed by mass action of the two acceptor substrates present. Enzymatic synthesis of 2-deoxy-尾-d-glucosyl-(1鈫?)-d-glucose is effectively promoted by catalytic concentrations of phosphate, suggesting that catalytic reaction proceeds through a quaternary complex of CuCPase, d-glucal, phosphate, and d-glucose. Conversion of d-glucal and phosphate presents a convenient single-step synthesis of 2-deoxy-伪-d-glucose 1-phosphate that is difficult to prepare chemically.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700