Synthesis and gas sensing properties of hierarchical meso-macroporous SnO2 for detection of indoor air pollutants
详细信息查看全文 | 推荐本文 |
摘要
Hierarchical meso-macroporous SnO2 was synthesized by a sol-gel process using carbonaceous spheres as sacrificial templates. The morphology of meso-macroporous structures can be controlled by adjusting the sintering temperature. Compared with the traditional SnO2, the hierarchical meso-macroporous SnO2 exhibited higher gas response and shorter response and recovery times in detecting indoor air pollutants including ethanol, benzene and toluene. With regard to the gas sensing property, mesopores provide plenty of active sites for surface chemical reactions, on the one hand. On the other hand, the gas diffusion in the sensing film can be improved by macropores greatly. The morphology and structures were characterized by field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700