Geochronology of granulite, charnockite and gneiss in the poly-metamorphosed Gaozhou Complex (Yunkai massif), South China: Emphasis on the in-situ EMP monazite dating
详细信息查看全文 | 推荐本文 |
摘要
The in-situ EMP (electron microprobe) monazite age dating performed directly in the polished sections, in addition to the conventional U-Pb zircon and EMP monazite age dating on grains from heavy mineral concentrates, has been applied to the granulite, charnockite and gneiss in the Gaozhou Complex of the Yunkai massif in South China. While the conventional dating systems all give Caledonian ages, the in-situ EMP monazite ages provide more information to reveal not only detailed age groups pertaining to the Caledonian orogeny but also traces of later thermal events overprinting these rocks. For granulites, although some monazites present zoning (concentric, patchy and complex) in the BSE images, no discernable age differences are observed. Resetting of the Th-U-Pb monazite dating system under the high temperature condition could be the reason. Ages of homogeneous monazite in garnet porphyroblast (ca. 440 Ma) of the garnet-cordierite granulite that match nicely with the U-Pb zircon ages are systematically older than those in the matrix (ca. 430 Ma). The same case of two age groups is also present in the orthopyroxene-biotite granulite as revealed by monazite inclusions in plagioclase and orthopyroxene and those in quartz, respectively. For charnockites, despite similar ages of ca. 430 Ma are given by monazite in biotite and zircon in the rock, significant younger ages are obtained from monazites with particular features. Relict monazites with a breakdown texture to form successive layers of apatite and allanite in the rim as well as those which are close to the biotite-chlorite microvein always show a similar age of ca. 230 Ma. Moreover, tiny monazites in close association with the garnetiferous corona mainly surrounding orthopyroxene give rise to another age group around 370 Ma. For gneissic rocks, monazites enclosed by quartz give 434 Ma and those setting in the chlorite-epidote microvein of a paragneiss yield 237 Ma, consistent with the U-Pb zircon core-rim age variations in the orthogneisses. With all these data, we suggest that the Gaozhou Complex is a Caledonian high-grade metamorphic terrain enduring initiation of granulites and paragneisses at the progressive metamorphism that predates intrusion of charnockites, formation of orthogneisses and modification of granulites and paragneisses at the peak time (436-432 Ma). It was then reactivated by the Hercynian and more vigorous Indosinian orogenies probably involving participation of fluid phases in the long course of retrogressive metamorphism during the early Phanerozoic. Such a tectonothermal evolution in the Yunkai massif may be comparable to the Kontum massif in central Vietnam.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700