Maximum relative entropy-based probabilistic inference in fatigue crack damage prognostics
详细信息查看全文 | 推荐本文 |
摘要
A general probabilistic inference procedure is proposed in this paper based on the Maximum relative Entropy (MrE) approach which generalizes both Bayesian and Maximum Entropy (MaxEnt) inference methodologies. The construction of the conditional probability (likelihood function) for general model-based inference problems is discussed in detail to systematically manage uncertainties from mechanism modeling, model parameters, and measurements. Analytical and numerical examples are used to investigate the sequence effect in the probabilistic inference using point observations and moment constraints. The developed methodology is applied to the engineering fatigue crack growth problem with experimental data for demonstration and validation. Following this, a detailed comparison between the classical Bayesian inference and the MrE inference is given.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700