Effects of buffer layer thickness on properties of ZnO thin films grown on porous silicon by plasma-assisted molecular beam epitaxy
详细信息查看全文 | 推荐本文 |
摘要
ZnO thin films with different buffer layer thicknesses were grown on Si and porous silicon (PS) by plasma-assisted molecular beam epitaxy (PA-MBE). The effects of PS and buffer layer thickness on the structural and optical properties of ZnO thin films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL). The ZnO buffer layers, the intensity of the (002) diffraction peak for the ZnO thin films and its full width at half maximum (FWHM) decreased with an increase in the thickness of the ZnO buffer layers, indicating an improvement in the crystal quality of the films. On introducing PS as a substrate, the grain sizes of the ZnO thin films became larger and their residual stress could be relaxed compared with the ZnO thin films grown on Si. The intensity ratio of the ultraviolet (UV) to visible emission peak in the PL spectra of the ZnO thin films increased with an increase in buffer layer thickness. Stronger and narrower UV emission peaks were observed for ZnO thin films grown on PS. Their structural and optical properties were enhanced by increasing the buffer layer thickness. In addition, introduction of PS as a substrate enhanced the structural and optical properties of the ZnO thin films and also suppressed Fabry-Perot interference.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700