Modeling the liquid-gas interface using self-assembled monolayers
详细信息查看全文 | 推荐本文 |
摘要
Stochastic classical trajectory simulations were used to study the efficiency of the energy exchange at the gas-liquid interface. Self-assembled monolayers (SAM) of long-chain functionalized molecules were used to mimic the liquid surface. Since the molecules in the monolayers are anchored by only one end, they retain some of the mobility that they have in the liquid but lose all their fluidity. The corrugation of the surface and the stiffness of the interface were tuned by varying the length of the molecules in the monolayers. The use of longer molecules leads to increased corrugation of the surface and provides additional dissipation channels that promote more efficient momentum and energy accommodation, increase the translational-rotational energy interconversion and enhance trapping. However, this 鈥渓ength effect鈥?appears to saturate, as no further significant changes are observed in those properties when the monolayer's molecules's length is elongated from six to nine carbons. This saturation effect suggests that, even though monolayers can provide some of the mobility observed in liquid surfaces, they lack the energy dissipation channel provided by the fluidity of the liquid.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700