Chemical and physical aspects of organic fouling of forward osmosis membranes
详细信息查看全文 | 推荐本文 |
摘要
The growing attention to forward osmosis (FO) membrane processes from various disciplines raises the demand for systematic research on FO membrane fouling. This study investigates the role of various physical and chemical interactions, such as intermolecular adhesion forces, calcium binding, initial permeate flux, and membrane orientation, in organic fouling of forward osmosis membranes. Alginate, bovine serum albumin (BSA), and Aldrich humic acid (AHA) were chosen as model organic foulants. Atomic force microscopy (AFM) was used to quantify the intermolecular adhesion forces between the foulant and the clean or fouled membrane in order to better understand the fouling mechanisms. A strong correlation between organic fouling and intermolecular adhesion was observed, indicating that foulant–foulant interaction plays an important role in determining the rate and extent of organic fouling. The fouling data showed that FO fouling is governed by the coupled influence of chemical and hydrodynamic interactions. Calcium binding, permeation drag, and hydrodynamic shear force are the major factors governing the development of a fouling layer on the membrane surface. However, the dominating factors controlling membrane fouling vary from foulant to foulant. With stronger intermolecular adhesion forces, hydrodynamic conditions for favorable foulant deposition leading to cake formation are more readily attained. Before a compact cake layer is formed, the fouling rate is affected by both the intermolecular adhesion forces and hydrodynamic conditions. However, once the cake layer forms, all three foulants have very similar flux decline rates, and further changes in hydrodynamic conditions do not influence fouling behavior.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700