Computations of fatigue crack growth with strain gradient plasticity and an irreversible cohesive zone model
详细信息查看全文 | 推荐本文 |
摘要
Computations of fatigue crack growth with a first-order strain gradient plasticity (SGP) model and an irreversible cohesive zone model are reported. SGP plays a significant role in the model predictions and leads to increased fatigue crack growth rates relative to predictions with classical plasticity. Increased magnitudes of tractions and material separation at the crack tip together with reduced crack closure appear as the cause for accelerated crack growth in SGP. Under plane strain conditions SGP appears as an essential feature of the development of the crack closure zone. Size effects are explored relative to changes in internal material length scale as well as to structural length scales.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700