Naphthalene-based periodic nanoporous organosilicas: II. Hydrogen and methane adsorption and physicochemical study
详细信息查看全文 | 推荐本文 |
摘要
Novel Periodic Nanoporous Organosilicas (PNOs) synthesized by direct co-condensation of tetraethylorthosilicate and triethoxy(naphthalen-1-yl)silane (as described in detail in part I) were evaluated for their hydrogen and methane storage ability. The naphthalene-based PNO materials exhibit regular hexagonal arrangement of uniform pores, high naphthalene content up to 17 wt.%, specific surface areas above 1000 m2/g and pore size distributions in the microporous/mesoporous boundary. Methane and hydrogen storage properties, at different temperatures, have been investigated for these samples by Sievert-type apparatus. The samples exhibit a reversible methane/hydrogen surface excess adsorption capacity, with measured maximum uptake of up to 5.27 wt.%at 298 K and 3.5 MPa and 2.05 wt.%at 77 K and 4.3 MPa respectively. The analysis of the obtained isotherm curves by T蠈th equation shows high grade of surface homogeneity of the samples. Total storage capacities were also estimated. For methane a maximum 41.6 v/v at 298 K and 3.5 MPa was found, while for hydrogen a maximum 15.8 g/L at 77 K and 4.3 MPa was calculated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700