Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions
详细信息查看全文 | 推荐本文 |
摘要
The Mg isotope composition of biogenic and inorganic carbonate bears on paleoclimate and paleooceanography studies because of the potential for constraining temperatures, so-called 鈥渧ital鈥?effects, and marine Mg fluxes. Previous work has shown that marine organisms produce a wide range of Mg isotope compositions that are species dependent, where 26/24Mgcarb-sol fractionations vary from 鈭?鈥?to 鈭?鈥?(e.g., , GCA). Constraining Mg isotope fractionation during inorganic carbonate precipitation is important because this serves as a baseline with which to compare biogenic samples, as well as constrain Mg cycling in natural environments. We report Mg isotope fractionation factors between Mg-bearing calcite and aqueous Mg (Mg/Ca molar ratio between 3:1 and 13:1) from 20 free-drift and one chemo-stat experiment conducted at temperatures between 4 掳C and 45 掳C, for solutions buffered at between 0.038%and 3%. Pure CaCO3 seed crystals were used to promote the heterogeneous growth of carbonate from solution, and to minimize kinetic isotope effects associated with nucleation and rapid precipitation from strongly super-saturated solutions. Under these conditions, calcite overgrowths that contained 0.8-14.9 mol%MgCO3 precipitated on the seed crystals. The measured 26Mg/24Mg fractionation factors between Mg-calcite and solution (26Mgcal-sol) are modestly correlated with temperature, changing from 鈭?.70鈥?at 4 掳C to 鈭?.22鈥?at 45 掳C. The fractionation factors are not correlated with experimental conditions (chemo-stat vs. free drift), Mg content of the overgrowth, , or the Mg/Ca ratio of the solution. The temperature-dependence of the Mg isotope fractionation is: 26Mgcal-sol=(鈭?.158卤0.051)脳106/T2鈭?0.74卤0.56), where T is temperature in Kelvin. Fractionation of Mg isotopes in calcite is much less sensitive to temperature than oxygen isotope fractionation, which limits its application as a geothermometer. In contrast, the Mg isotope fractionations for biogenically precipitated Mg calcite vary greatly, suggesting its potential to discern 鈥渧ital鈥?effects in natural samples. Finally, the relatively small temperature effect on Mg isotope fractionation greatly simplifies use of Mg isotopes in modern or ancient marine systems to constrain Mg fluxes, including continental weathering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700