Development of a galvanostatic analysis technique as an in-situ diagnostic tool for PEMFC single cells and stacks
详细信息查看全文 | 推荐本文 |
摘要
A new galvanostatic analysis technique was developed for PEMFC single cells and stacks, while conventional potentiodynamic techniques, such as cyclic voltammetry for an electrochemical active surface area (EAS) and linear sweep voltammetry for a crossover current , cannot be directly utilized for stacks. Using a developed relationship for double-layer charging region, the and Cdl (double-layer capacitance) of a PEMFC single cell could be determined from the galvanostatic data under an atmosphere of nitrogen (cathodes) and hydrogen (anodes). Then, simply from the elapsed time in hydrogen adsorption/desorption region, EAS or roughness factors could be analyzed for a PEMFC single cell. For a 5-cell PEMFC stack, it was experimentally confirmed that the same analysis technique can be applied to analyze performance distribution in PEMFC stacks. As the characteristics of catalyst layers (EAS and Cdl) and polymer electrolyte membranes of individual cells can be analyzed without stack disassembly, the developed galvanostatic technique is expected to be utilized for the degradation study and performance monitoring of practical PEMFC stacks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700