First-principles study on structural and electronic properties of AlNSix heterosheet
详细信息查看全文 | 推荐本文 |
摘要
Under generalized gradient approximation (GGA), the structural and electronic properties of AlN and Si sheets, hydrogen terminated AlN and Si nanoribbons with hexagonal morphology and 2, 4, 6 zigzag chains across the ribbon width and the hexagonally bonded heterosheets AlNSix (x=2, 4, and 6) consisting of hexagonal networks of AlN (h-AlN) strips and silicene sheets with zigzag shaped borders have been investigated using the first-principles projector-augmented wave (PAW) formalism within the density function theory (DFT) framework. The AlN sheet is an indirect semiconductor with a band gap of 2.56 eV, while the Si sheet has a metallic character since the lowest unoccupied conduction band (LUCB) and the highest occupied valence band (HOVB) meet at one k point from 螕 to Z. In the semiconductor 6-ZAlNNR, for example, the states of LUCB and HOVB at zone boundary Z are edge states whose charges are localized at edge Al and N atoms, respectively. In metallic 6-ZSiNR, a flat edge state is formed at the Fermi level EF near the zone boundary Z because its charges are localized at edge Si atoms. The hybridizations between the edge states of h-AlN strips and silicene sheets result in the appearance of border states in the zigzag borders of heterosheets AlNSix whose charges are localized at two atoms of the borders with either bonding or antibonding 蟺 character.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700