Boron nitride substrate-induced reversible hydrogen storage in bilayer solid matrix via interlayer spacing
详细信息查看全文 | 推荐本文 |
摘要
By using first-principles methods, we perform a theoretical investigation of adsorption of hydrogen molecules between bilayer solid matrix layers (bilayer boron nitride sheets (BBN) and graphene/boron nitride heterobilayers (GBN)) with variable interlayer distance (ILD). We find that the H2 adsorption energy has a minimum by expanding the interlayer spacing, along with further interlayer expansion, arising from many H2 binding states and electrostatic interaction induced by the polar nature of B-N bonds. To determine if successive addition of H2 molecules is indeed possible using the minimal H2 adsorption energy as the reference state, we then simulate the hydrogen storage capacity of BBN and GBN with different stacking types, and find that the GBN with Bernal stacking is superior for reversible hydrogen storage. Up to eight H2 molecules can be adsorbed with the average adsorption energy of 鈭?.20聽eV/H2, corresponding to 鈭?.69聽wt%hydrogen uptake.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700