Probing chemical reactions on the nanometer scale: Inverted chemical force microscopy of reactive self-assembled monolayers
详细信息查看全文 | 推荐本文 |
摘要
The hydrolysis and aminolysis of 11,11芒芒芒-dithiobis(N-hydroxysuccinimidylundecanoate) (NHS-C10) adsorbed as self-assembled monolayer (SAM) on gold surfaces were monitored on the nanometer scale by a novel approach termed 芒芒芒inverted芒芒芒 chemical force microscopy (iCFM). In iCFM the reactants are immobilized on an atomic force microscopy tip rather than on the substrate and the chemical reactions that take place at the surface of the tip are probed by force芒芒芒displacement measurements on an inert octadecanethiol-covered Au substrate. The information obtained is confined to the contact area at pull-off, which is of the order of only several nm2. Thus interactions and hence reaction kinetics can be quantitatively studied on the level of 芒芒芒10芒芒芒100 molecules. In particular, iCFM data show that the aminolysis reaction on SAMs of NHS-C10 is a spatially heterogeneous reaction. In addition information about the defect density of reactive SAMs can be obtained.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700