High glucose concentration leads to differential expression of tight junction proteins in human retinal pigment epithelial cells
详细信息查看全文 | 推荐本文 |
摘要
| ReferencesReferences

Introduction

One of the early features of diabetic retinopathy is the breakdown of the blood-retinal barrier (BRB) due to disruption of the tight junctions. Whereas impairment of the proteins involved in the disruption of the tight junctions of the internal BRB has been extensively studied, there is no information on the direct effect of high glucose concentration on the barrier function of the outer blood-retinal barrier (formed by the retinal pigment epithelium [RPE]). The aim of this study was to explore the effect of high glucose concentration on the expression of tight junction proteins (occludin, zonula occludens-1 [ZO-1] and claudin-1) in a human RPE line under two distinct glucose concentrations.

Materials and methods

An RPE cell line (ARPE-19) were cultured for 3 weeks in a medium supplemented with 10%fetal calf serum containing 5.5 mmol D-glucose (mimicking physiological conditions) or 25 mmol Dglucose (mimicking the hyperglycemia that occurs in diabetic patients). Occludin, ZO-1 and claudin-1 were studied by real-time polymerase chain reaction and Western blot at 14 and 21 days.

Results

Occludin and ZO-1 mRNA levels and protein content were similar in cultures maintained at 5.5 mmol and 25 mmol of D-glucose. In contrast, high glucose concentration (25 mmol) induced a clear upregulation in claudin-1 mRNA expression and protein content at 21 days (mRNA level: 1.03 vs 2.29; protein content: 0.92 vs 1.14).

Conclusions

High glucose concentration leads to differential expression of tight junction proteins in ARPE-19 cells. In addition, our results suggest that the upregulation of claudin-1by glucose is involved in the increase of tight junction sealing function. The functional consequences and clinical applicability of these findings require further investigation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700