Analysis of intracranial pressure pulse waveform and brain capillary morphology in type 2 diabetes mellitus rats
详细信息查看全文 | 推荐本文 |
摘要
Diabetes mellitus in neurosurgical patients is known to be a disease with high risks and severe outcomes. However, the mechanism by which diabetes mellitus induces dysfunction of brain tissue is not well known. The hypothesis of this study was that the damage to brain microvasculature in diabetes mellitus results in impaired compliance of the brain. Pathological changes associated with type II diabetes were investigated using a rat model. Pathophysiological changes in diabetic brain tissue were also investigated to confirm cerebral compliance by analyzing intracranial pressure waveforms. Pathologic findings revealed thickening of the basement membrane and fibrous collagen infiltration into the inner basement membrane of the brain microvasculature in diabetes mellitus. Analysis of intracranial pressure waveforms revealed that the P2 portion increased in diabetic rats compared to the control and was increased further with the increase in intracranial pressure. Analysis of the differential pressure curve, with respect to time, demonstrated that intracranial elasticity showed a concomitant increase. Pathologic findings and intracranial pressure waveforms were consistent with changes in brain microvasculature in diabetes mellitus. The increase of elasticity of brain tissue in diabetes mellitus may exacerbate the damage of intracranial disease.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700