Numerical analysis of contaminant removal from fractured rock during boiling
详细信息查看全文 | 推荐本文 |
摘要
A multiphase heat transfer numerical model is used to simulate a laboratory experiment of contaminant removal at boiling temperatures from a rock core representing the matrix adjacent to a fracture. The simulated temperature, condensate production, contaminant and bromide concentrations are similar to experimental data. A key observation from the experiment and simulation is that boiling out approximately 1/2 pore volume (50 mL) of water results in the removal of essentially 100%of the dissolved volatile contaminant (1,2-DCA). A field-scale simulation using the multiple interacting continua (MINC) discretization approach is conducted to illustrate possible applications of thermal remediation of fractured geologic media, assuming uniform heating. The results show that after 28%of the pore water (including both steam vapor and liquid water) was extracted, and essentially all the 1,2-DCA mass (more than 99%) was removed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700