Structural, thermodynamic, electronic, and optical properties of NaH from first-principles calculations
详细信息查看全文 | 推荐本文 |
摘要
The structural stability, thermodynamic, electronic, and optical properties of NaH with rock salt (B1) structure and cesium chloride (B2) structure under high pressure are investigated by first-principles calculations using norm-conserving pseudopotential applying a generalized gradient approximation (GGA) for exchange and correlation. Through the analysis of energy-volume variation, we find the phase transition of NaH from B1 to B2 structure occurs at 32.3 GPa, which in good agreement with the diamond-anvil-cell high-pressure experimental value of 29.3 卤 0.9 GPa [Phys. Rev. B 36 (1987) 7664]. By using the quasi-harmonic Debye model, the thermodynamic properties including the Debye temperature D, heat capacity CV, thermal expansion coefficient , and Gr眉neisen parameter are successfully obtained in the temperature range from 0 to 700 K and pressure ranges from 0 to 32 GPa and 33 to 100 GPa for NaH B1 and B2 phases, respectively. Analysis of band structures suggests that the NaH has an indirect band gap that the valence band maximum is at the W point and the conduction minimum locates at L point. The calculated energy gaps is very close to that value obtained in recent full potential augmented plane wave calculations. The optical properties including dielectric function (), absorption coefficient (), reflectivity coefficient R(), and refractive index n() are also calculated and analyzed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700