Genetic analysis of three genes causing isolated methylmalonic acidemia: identification of 21 novel allelic variants
详细信息查看全文 | 推荐本文 |
摘要
Isolated methylmalonic aciduria (MMA) is an inborn error of metabolism due to the impaired isomerization of l-methylmalonyl-CoA to succinyl-CoA. This reaction is catalyzed by the mitochondrial protein methylmalonyl-CoA mutase (MCM, EC 5.4.99.2), an adenosylcobalamin-dependent enzyme. Four different forms of isolated MMA have been described: mut MMA associated with defects in the MCM apoenzyme, and phenotypically divided into two subtypes mut and mut0 MMA, and three different defects involved in the synthesis of the active form of the cofactor adenosylcobalamin, termed cbl MMA, and classified into three different complementation groups cblA, cblB, and cblH associated with defects in the MMAA and MMAB genes and with an unidentified protein, respectively. In this work we describe the genetic analysis of 25 MMA patients, mainly from Spain. Using biochemical and cellular approaches our patients have been classified, identifying 13 mut MMA, 7 cblA, 2 cblB, and 3 noncblA, noncblB deficient patients. cDNA and genomic DNA sequence analysis of the MUT, MMAA, and MMAB genes have allowed us to identify 27 different changes, 21 novel ones. Among the missense mutations identified in the MUT gene only one, the c.970G > A (p.A324T) variant located in the substrate binding domain is likely a mut mutation. The remaining missense mutations c.326A > G (p.Q109R), c.983T > C (p.L328P), c.1846C > T (p.R616C), and c.1850T > G (p.L617R) are probably mut0. In the MMAA patients analyzed, frameshift mutations are prevalent. We have explored the genotype–phenotype correlation for this clinically heterogeneous disease.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700