Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel
详细信息查看全文 | 推荐本文 |
摘要
The morphological microstructure, the density and dispersion of high angle boundaries, morphology and micro chemical composition of precipitates and the volume fraction of retained austenite of a commercial super martensitic stainless steel (SMSS) normalized and tempered at various temperatures were characterized by optical microscope, scanning electron microscope (SEM), electron backscattered diffraction (EBSD), transmission electron microscope (TEM) and X-ray diffraction (XRD) in the light of equilibrium phase diagram of the alloy calculated using Thermo-Calc software. The mechanical properties and pitting corrosion resistance were determined to correlate with microstructures. Two kinds of morphology of precipitate were observed in tempered commercial super martensitic stainless. Besides the globular Nb and V rich carbo-nitride precipitates, rod-like Cr rich nitrides were formed due to excess N content. While high density of high angle boundaries and precipitates contribute to strength properties, the dislocation softening of the matrix and retained austenite from tempering restore the ductility and impact toughness properties. The poor resistance to pitting corrosion is attributed to the occurrence of Cr rich precipitates. It is demonstrated that by lowering the nitrogen content and adding niobium, the Cr rich precipitates can be suppressed and the mechanical properties and resistance to pitting corrosion can be significantly improved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700