Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment
详细信息查看全文 | 推荐本文 |
摘要
An injectable and biodegradable hydrogel system comprising hyaluronic acid-tyramine (HA-Tyr) conjugates can safely undergo covalent cross-linking in聽vivo by the addition of small amounts of peroxidase and hydrogen peroxide (H2O2), with the independent tuning of the gelation rate and degree of cross-linking. Such hydrogel networks with tunable mechanical and degradation properties may provide the additional level of control needed to enhance chondrogenesis and overall cartilage tissue formation in聽vitro and in聽vivo. In this study, HA-Tyr hydrogels were explored as biomimetic matrices for caprine mesenchymal stem cells (MSCs) in cartilage tissue engineering. The compressive modulus, equilibrium swelling and degradation rate could be controlled by varying the concentration of H2O2 as the oxidant in the oxidative coupling reaction. Cellular condensation reflected by the increase in effective number density of rounded cells in lacunae was greater in softer hydrogel matrices with lower cross-linking that displayed enhanced scaffold contracture. Conversely, within higher cross-linked matrices, cells adopted a more elongated morphology, with a reduced degree of cellular condensation. Furthermore, the degree of hydrogel cross-linking also modulated matrix biosynthesis and cartilage tissue histogenesis. Lower cross-linked matrix enhanced chondrogenesis with increases in the percentage of cells with chondrocytic morphology; biosynthetic rates of glycosaminoglycan and type II collagen; and hyaline cartilage tissue formation. With increasing cross-linking degree and matrix stiffness, a shift in MSC differentiation toward fibrous phenotypes with the formation of fibrocartilage and fibrous tissues was observed. These findings suggest that the tunable three-dimensional microenvironment of the HA-Tyr hydrogels modulates cellular condensation during chondrogenesis and has a dramatic impact on spatial organization of cells, matrix biosynthesis, and overall cartilage tissue histogenesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700