The use of sparsest cuts to reveal the hierarchical community structure of social networks
详细信息查看全文 | 推荐本文 |
摘要
We show that good community structures can be obtained by partitioning a social network in a succession of divisive sparsest cuts. A network flow algorithm based on fundamental principles of graph theory is introduced to identify the sparsest cuts and an underlying hierarchical community structure of the network via maximum concurrent flow. Matula [Matula, David W., 1985. Concurrent flow and concurrent connectivity in graphs. In: Alavi, Y., et al. (Eds.), Graph Theory and its Applications to Algorithms and Computer Science. Wiley, New York, NY, pp. 543–559.] established the maximum concurrent flow problem (MCFP), and papers on divisive vs. agglomerative average-linkage hierarchical clustering [e.g., Matula, David W., 1983. Cluster validity by concurrent chaining. In: Felsenstein, J. (Ed.), Numerical Taxonomy: Proc. of the NATO Adv. Study Inst., vol. 1. Springer-Verlag, New York, pp. 156–166 (Proceedings of NATO ASI Series G); Matula, David W., 1986. Divisive vs. agglomerative average linkage hierarchical clustering. In: Gaul, W., and Schader, M. (Eds.), Classification as a Tool of Research. Elsevier, North-Holland, Amsterdam, pp. 289–301; Thompson, Byron J., 1985. A flow rerouting algorithm for the maximum concurrent flow problem with variable capacities and demands, and its application to cluster analysis. Master Thesis. School of Engineering and Applied Science, Southern Methodist University] provide the basis for partitioning a social network by way of sparsest cuts and/or maximum concurrent flow.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700