Computational study of the reaction mechanism and kinetics of ethyl acrylate ozonolysis in atmosphere
详细信息查看全文 | 推荐本文 |
摘要
The reaction mechanism for the ozonolysis of ethyl acrylate (EA) has been investigated at the CCSD(T)/6-31G(d)+CF//B3LYP/6-31+G(d,p) level of theory. The profile of the potential energy surface (PES) is constructed. Ozone adds to EA via a cyclic transition state to produce a highly unstable primary ozonide which can decompose readily. Over the temperature range of 200-2000 K, the total and individual rate constants are obtained by employing multichannel Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The calculated rate constants are 1.37 脳 10鈭?8 cm3 molecule鈭? s鈭? at 294 K and 1.65 脳 10鈭?8 cm3 molecule鈭? s鈭? at 298 K under the pressure of 760 Torr. The main products of the reactions are ethyl glyoxylate and formaldehyde. These results are in good agreement with the previous experimental data. Several experimental uncertain products are identified. The branching ratios of main reaction paths are also discussed at different temperatures and pressures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700