Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes
详细信息查看全文 | 推荐本文 |
摘要
Methanol permeability in phosphoric acid-doped membranes based in poly[2,2鈥?(m-phenylene)-5,5鈥?bibenzimidazole] (PBI) and poly[2,5-benzimidazole] (ABPBI), prepared by two different casting procedures, were measured using a diffusion cell in the temperature range from 20 to 90 掳C, along with the electrical conductivity at 30 and 60 掳C. The permeability results, the first reported for ABPBI membranes, were compared to commercial Nafion 117 and commercial crosslinked ABPBI and correlated with differences in water and methanol sorption behavior of these materials, determined using a quartz crystal microbalance (QCM) on ultra-thin films (<100 nm). Methanol partition constant was calculated from 1H NMR analysis of the membrane desorption products in heavy water. The performance of ABPBI as methanol barrier is poorer than PBI, but it is more than one order of magnitude less permeable to methanol than Nafion 117 all over the temperature range. The commercial ABPBI membrane has slightly lower permeability than the ABPBI membrane obtained by high-temperature casting, indicating that an optimized casting procedure could be more efficient than crosslinking to reduce methanol crossover. The combination of low methanol uptake, high proton conductivity and, mainly, low methanol permeability make ABPBI membranes attractive as proton exchange membranes in direct methanol fuel cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700