Role of ATP-sensitive K+ channels in the antinociception induced by non-steroidal anti-inflammatory drugs in streptozotocin-diabetic and non-diabetic rats
详细信息查看全文 | 推荐本文 |
摘要
There is evidence that systemic sulfonylureas block diclofenac-induced antinociception in normal rat, suggesting that diclofenac activates ATP-sensitive K+ channels. However, there is no evidence for the systemic interaction between different non-steroidal anti-inflammatory drugs (NSAIDs) and sulfonylureas in streptozotocin (STZ)-diabetic rats. Therefore, this work was undertaken to determine whether two sulfonylureas, glibenclamide and glipizide, have any effect on the systemic antinociception that is induced by diclofenac (30 mg/kg), lumiracoxib (56 mg/kg), meloxicam (30 mg/kg), metamizol (56 mg/kg) and indomethacin (30 mg/kg) using the non-diabetic and STZ-diabetic rat formalin test. Systemic injections of NSAIDs produced dose-dependent antinociception during the second phase of the test in both non-diabetic and STZ-diabetic rats. Systemic pretreatment with glibenclamide (10 mg/kg) and glipizide (10 mg/kg) blocked diclofenac-induced systemic antinociception in the second phase of the test (P < 0.05) in both non-diabetic and STZ-diabetic rats. In contrast, pretreatment with glibenclamide or glipizide did not block lumiracoxib-, meloxicam-, metamizol-, and indomethacin-induced systemic antinociception (P > 0.05) in both groups. Results showed that systemic NSAIDs are able to produce antinociception in STZ-diabetic rats. Likewise, data suggest that diclofenac, but not other NSAIDs, activated K+ channels to induce its systemic antinociceptive effect in the non-diabetic and STZ-diabetic rat formalin test.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700