Mitochondrial vitamin B12-binding proteins in patients with inborn errors of cobalamin metabolism
详细信息查看全文 | 推荐本文 |
摘要
Inborn errors of vitamin B12 (cobalamin, Cbl) metabolism are autosomal recessive disorders and have been classified into nine distinct complementation classes (cblA-cblH and mut). Disorders affecting methylcobalamin metabolism cause megaloblastic anemia, which may be accompanied by leukopenia and thrombocytopenia, and a variety of neurological problems. Disorders affecting adenosylcobalamin cause methylmalonic acidemia and metabolic acidosis. Previous studies have shown that cobalamin binds to two enzymes in humans: methylmalonyl-CoA mutase in mitochondria and methionine synthase in the cytosol. In this study, cobalamin binding patterns were analyzed in crude mitochondrial fractions obtained from both control and patient fibroblasts that had been incubated with [57Co]cyanocobalamin. Crude mitochondrial fractions from control fibroblasts confirmed that the majority of [57Co]Cbl eluted with methylmalonyl-CoA mutase. However, in six of the nine disorders, at least one previously unidentified mitochondrial cobalamin binding protein was observed to bind [57Co]Cbl. The proportion of [57Co]Cbl that binds, is increased compared to controls when a deficiency in either adenosylcobalamin synthesis or utilization prevents binding to methylmalonyl-CoA mutase. Furthermore, unique cobalamin binding profiles emerged demonstrating how known mutations in these patients affect cobalamin binding to as yet unidentified proteins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700