Experimental investigation of non-Newtonian liquid flow in microchannels
详细信息查看全文 | 推荐本文 |
摘要
Investigation on non-Newtonian fluid flow in microchannels is of both fundamental interest and practical significance. Flow characteristics of deionized water and the PAM solution over a wide range of Reynolds numbers in fused silica microtubes with diameters from 75 to 250 渭m, fused silica square microchannels with equivalent diameters of 75 and 100 渭m, and stainless steel microtubes with diameters from 120 to 300 渭m, were studied experimentally. The obtained mass flow rate and friction factor for deionized water in smooth fused silica microchannels were in good agreement with theoretical predictions for conventional-sized channels while the deviation for stainless steel microtubes was observed due to the roughness. Friction factors of the PAM solution were much higher than conventional theoretical predictions. Flow behaviors of deionized water and the PAM solution under hydrophobic condition are also studied experimentally. The mass flow rate increased in hydrophobic microchannels compared to untreated microchannels. The drag reduction in hydrophobic channels is greater for rough stainless steel microtubes than for smooth fused silica channels. The effect of surface wettability on the shear thinning PAM solution is also observed to be more evident than on the Newtonian deionized water.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700