Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering
详细信息查看全文 | 推荐本文 |
摘要
Fine-grained tungsten heavy alloys (WHAs) were successfully produced using the high-energy ball milling assisted spark plasma sintering (SPS) method. The effects of increasing sintering temperatures on the microstructure and mechanical properties of the alloy were studied in detail. The hardness of the alloy was found to continuously decrease from 79.3 to 63.8 HRA. In contrast, the bending strength continuously increased from 353.6 to 954.5 MPa. W grain size increased with increased sintering temperature. The temperature ranges from 1000 to 1100 掳C and 1150 to 1200 掳C were a period of rapid growth of W grain. According to the color change in the scanning electron microscope (SEM) image, the W alloy microstructure were classified into white W grains, off-white W-rich particles, dark grey matrix 纬-(Ni, Fe, W), as well as pitch-black W- and O-rich particles. The bending fracture of the alloy mainly displays the features of intergranular fracture. The microporosity of different sizes was distributed on the bending fracture, and grew with increased sintering temperature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700