Recent advances in mechanobiological modeling of bone regeneration
详细信息查看全文 | 推荐本文 |
摘要
Skeletal regeneration and bone fracture repair involves complex cellular and molecular events that result in new bone formation. Many of the critical steps during bone healing are dependent on the local mechanical environment in the healing tissue. Computational models are used together with mechano-regulation algorithms to predict the influence of mechanical stimuli on the tissue differentiation process during bone healing.

This paper reviews the field of computational mechanobiology with focus on bone healing. The history of mechanoregulatory modeling is described, as well as the recent advances and current problems. Most recent advances have been focusing on integrating the mechano-regulatory algorithms with more sophisticated description of the cellular and molecular events. Achieving suitable validation for the models is the most significant challenge. Thus far, focus has been on corroborating mechanoregulatory models by comparing existing models with well characterized experimental data, identify shortcomings and further develop improved computational models of bone healing. Ultimately, these models can be used to help unraveling the basic principles of cell and tissue differentiation, optimization of implant design, and potentially to investigate treatments of non-union and other pathologies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700