Monolithic silica-based capillary column with strong chiral cation-exchange type surface modification for enantioselective non-aqueous capillary electrochromatography
详细信息查看全文 | 推荐本文 |
摘要
A silica-based monolithic stationary phase prepared by the sol–gel process in a 100 μm I.D. fused-silica (FS) capillary has been modified chemically with 3-mercaptopropyl trimethoxysilane followed by immobilization of a strong cation-exchange (SCX) type chiral selector, (S)-N-(4-allyloxy-3,5-dichlorobenzoyl)-2-amino-3,3-dimethylbutane phosphonic acid, by radical addition reaction onto the reactive sulfhydryl surface. After a fine-tuning of the mobile phase composition, the enantioselective capillary column was evaluated for the separation of various chiral basic drugs by enantioselective non-aqueous capillary electrochromatography (CEC), in comparison to capillary column analogs packed with 3.5 μm silica particles having attached the same selector. The performance of the monolithic silica column was further compared to corresponding polymethacrylate-based organic polymer monoliths. The study indicated that strong counter-ions such as 2-aminobutanol or N,N,N′,N′-tetramethylethylenediamine are needed, although they reduce the electroosmotic flow velocity and separation factors in comparison to less efficient counter-ions, in order to allow the elution of the oppositely charged solutes in the ion-exchange retention mode within reasonable run time and as sharp zones. In contrast, weak counter-ions such as N,N-diisopropylethylamine (Huenig base) provided stronger electroosmotic flow and much better separation factors, but relatively poor peak efficiencies. Overall, with the chemically functionalized monolithic silica column the high quality separations of packed column analogs could be approximated, with regards to both separation factors and peak performances. On the other hand, the monolithic capillary column certainly outperformed the packed column in terms of system robustness under capillary electrochromatography conditions and showed excellent column longevity. The enantioselective strong cation-exchange-type monolithic silica column performed also well in comparison to the organic polymer monolith.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700