Ochratoxin A induces oxidative DNA damage and G1 phase arrest in human peripheral blood mononuclear cells in vitro
详细信息查看全文 | 推荐本文 |
摘要
Ochratoxin A is one of the most abundant food-contaminating mycotoxins worldwide, and its immunosuppressive effects in human caused more and more concern in biomedical field. In the present study, the toxicity of OTA on human peripheral blood mononuclear cells (hPBMC) was explored by analyzing the involvement of oxidative pathway. It was found that OTA treatment led to the release of reactive oxygen species (ROS) and the increase of 8-hydroxydeoxyguanosine (8-OHdG), an important biomarker of oxidative DNA stress. Moreover, we found that OTA treatment induced DNA strand breaks in hPBMC as evidenced by DNA comet tails formation and increased 纬-H2AX expression. In addition, OTA could induce cell cycle arrest at G1 phase by down-regulating the expression of CDK4 and cyclinD1 protein, as well as apoptosis in hPBMC in vitro. Pre-treatment of hPBMC with antioxidant, N-acetyl-l-cysteine (NAC), could reduce OTA-induced ROS release and DNA damage, thus confirming the involvement of oxidative DNA damage in the OTA genotoxicity in hPBMC. NAC pre-treatment could also significantly prevent OTA-induced down-regulation of CDK4 and cyclinD1 expression in hPBMC. All the results demonstrated the involvement of oxidative pathway in OTA mediated cytotoxicity in human immune cells, which including the ROS accumulation-oxidative DNA damage-G1 arrest and apoptosis. Our results provide new insights into the molecular mechanisms by which OTA might promote immunotoxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700