Numerical study on the effect of the cavitation phenomenon on the characteristics of fuel spray
详细信息查看全文 | 推荐本文 |
摘要
In direct injection diesel engines, the shape of spray and quality of atomization strongly affect the performance and outlet emissions of engine. If this spray leads to smaller droplets, combustion will become better and faster, performance and torque will be increased, and outlet emissions will be decreased. Cavitation phenomenon in the injector hole of the combustion engines has significant effect on the fuel spray characteristics. In this work, for certain geometry of nozzle, effects of cavitation on quality and spray characteristics like penetration length, SMD and distribution of fuel, was studied numerically. The commercial code, FIRE was used for meshing and simulating and solving the conservation equations, which are based on finite volume method. Finite difference schemes were selected for discretisation of momentum equation and upwind scheme was selected for turbulence and energy equations and the k- model was used for simulating the turbulence. The DDM method was selected for modeling the spray flow and finally the WAVE model was selected to study the droplets breakup and secondary break up. To create cavitation phenomenon and study its effects on the spray characteristics, different values of R/D were selected and for all different values of R/D, spray characteristics are obtained and consequently the effect of cavitation phenomenon on the spray quality was revealed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700