Expression of AP-1 family transcription factors in the amygdala during conditioned taste aversion learning: Role for Fra-2
详细信息查看全文 | 推荐本文 |
摘要
Conditioned taste aversion (CTA) learning occurs after the pairing of a novel taste with a toxin (e.g. sucrose with LiCl). The immediate early gene c-Fos is necessary for CTA learning, but c-Fos alone cannot be sufficient for consolidation. The expression of other AP-1 proteins from the Fos- and Jun-families may also be required shortly after conditioning for CTA consolidation. To screen for the expression of AP-1 transcription factors within small subregions, RT-PCR analysis was used after laser capture microdissection of the amygdala. Rats were infused intraorally with 5%sucrose (6 ml/6 min) or injected with LiCl (12 ml/kg, 0.15 M, i.p.) or given sucrose paired with LiCl (sucrose/LiCl), or not treated; 1 h later their brains were dissected. The lateral (LA), basolateral (BLA), and central (CeA) subnuclei of the amgydala of single 5 μm sections from individual rats were dissected using the Arcturus PixCell II system. Semi-quantitative RT-PCR showed the consistent presence of c-Fos, Fra-2, c-Jun, and JunD in the amygdala. In situ hybridization confirmed that c-Fos and Fra-2 mRNA expression was increased in the CeA after LiCl and sucrose/LiCl treatment. Immunohistochemistry for Fra-2 revealed high baseline levels of Fra-2 protein in the BLA and CeA, but also an increase in Fra-2 in the BLA and CeA after LiCl and sucrose/LiCl treatment. The similarity of response in LiCl and sucrose/LiCl treated groups might reflect activation by LiCl in both groups. To control for the effects of LiCl, rats were tested in a learned safety experiment. Fra-2 and c-Fos were examined in response to sucrose/LiCl in rats with prior familiarity with sucrose compared to rats without prior exposure to sucrose. The familiar (pre-exposure) group showed a significantly decreased number of Fra-2-positive cells compared with the novel group in the BLA, but not in the CeA. Because pre-exposure to sucrose attenuates CTA learning, a decreased cellular response in pre-exposed rats suggests a specific correlation with CTA learning. Changes in Fra-2 and c-Fos expression in the BLA and CeA at the time of conditioning, together with constitutive expression of c-Jun and JunD, may contribute to CTA learning.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700